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This appendix describes several simulation studies that characterize the performance of

the c-REML effect size estimator. The first simulation compares the operating characteristics

of the c-REML estimator and the HPS estimator under data-generating model MB1. The

second and third simulations examine the operating characteristics of the c-REML estimator

under models MB2 and MB4, respectively. For each simulation, we study (1) the bias and

precision of the effect size estimators, (2) the bias of the associated variance estimators, and

(3) the actual coverage rates of 95% confidence intervals.

In all three simulations, we used the lme function from the R package nlme (Pinheiro,

Bates, DebRoy, & Sarkar, 2012, Version 3.1.111) to obtain REML estimates. This function

uses a log-Cholesky parameterization for the random effects covariance matrix, which has

an unrestricted parameter space (Pinheiro & Bates, 1996). We allowed the maximization

routine to run for at most 50 iterations, and accepted the resulting values even if they had

not converged to a maximum. We used the expected information matrix to evaluate the

covariance of the REML variance component estimates C(ω̂) and the degrees of freedom ν.1

Throughout, we display selected margins rather than results for every factor level. Complete

simulation results, as well as the R code used to perform the simulations, are available in

the accompanying R package scdhlm.

1The automatic output of the nlme package does not use the inverse expected information matrix for
estimating the variance of the variance components, but rather uses a numerical approximation to the
Hessian of the log-likelihood. We wrote a separate function to calculate the expected information matrix
from supplied parameter estimates. The function is available in the accompanying R package scdhlm.
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Table S1: Simulation design for model MB1

Parameter Definition Levels Min. Step Max.

φ Autocorrelation 8 −0.7 0.2 0.7
ρ Within-case reliability 5 0.0 0.2 0.8
m Number of cases 4 3 1 6
N Measurement occasions 2 8 8 16

1 Model MB1

The first simulation study compared the performance of the c-REML estimator to that of the

estimator proposed by HPS, using bias and mean-squared error as the criteria. Following the

simulation studies reported by HPS, we used a multiple baseline design in which treatment

assignment times are spread as evenly as possible across the range of measurement occasions

while maintaining at least 3 measurement occasions within each phase.

Table 1 reports the design of the simulation study, which consists of an 8 × 5 × 4 × 2

factorial and follows the broad outlines of the simulations reported by HPS, but with fewer

levels for certain parameters. Based on recent empirical research on levels of auto-correlation

in single-case series (Shadish, Rindskopf, Hedges, & Sullivan, 2013; Shadish & Sullivan, 2011),

the auto-correlation φ was varied between −0.7 and 0.7 (HPS used -0.9 to 0.9). The total

variance was fixed to τ 20 + σ2 = 1 while the within-case reliability ρ = τ 20 /(τ
2
0 + σ2) was

varied between 0.0 and 0.8. The number of cases and number of measurement occasions was

limited to the smaller of the levels considered by HPS, because the bias of their estimator

was negligible for larger sample sizes. The fixed effects were set to γ00 = 0, γ10 = 1, so

that the effect size parameter δAB was equal to one. HPS observed that the bias of their

estimator was proportional to the effect size parameter. On the assumption that the c-REML

estimator behaves similarly, we interpret the simulated biases as proportions of the effect

size parameter (e.g., bias of less than 2%).

For each combination of parameter levels, we generated 2 × 104 datasets. We then

calculated two effect size estimates based on each simulated dataset: the HPS estimator
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Figure S1: Bias of effect size estimators under MB1. Point-wise Monte Carlo s.e. < 0.005.

(denoted gHPS) and the c-REML estimator (denoted gAB). Both effect size estimators were

calculated based on the same simulated data set, creating inter-correlation in their sampling

distributions; consequently, differences between the estimators have very low Monte Carlo

error.

Figure S1 plots the bias of the effect size estimators for the smaller series length of

N = 8, across varying levels of the remaining parameters.2 Overall, the bias of the c-REML

estimator is quite small and comparable to the bias of the HPS estimator. At the smallest

sample size considered (m = 3, N = 8), gAB has a slightly more negative bias than gHPS

when ρ is low, but a comparable bias when ρ is larger; still, the bias of gAB is never greater

than 4.3% in absolute magnitude. For m = 4, the bias of gAB is always less than 2.4%, while

at the largest sample size considered (m = 6), the bias does not exceed 0.9%.

2The rows of the lattice correspond to different values of the number of cases m, while the columns of
the lattice correspond to varying values of ρ; the x-axis of each panel corresponds to φ, and different colors
and line-types correspond to each estimator. Note that the vertical axis of each graph differs across rows.
Results for N = 16 are very similar.
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Table S2: Average mean-squared error of effect size estimators under MB1

N = 8 N = 16

m gHPS gAB gHPS gAB

3 0.265 0.231 0.200 0.168
4 0.173 0.155 0.135 0.114
5 0.128 0.115 0.099 0.084
6 0.102 0.092 0.078 0.067

Given that both estimators have small biases, it is reasonable to also compare their

precision. Table 1 reports the average mean squared error (MSE) of each estimator, where

the average is taken over the levels of the nuisance parameters φ and ρ. On average and

across sample sizes, gAB has slightly better precision than the HPS estimator.

In addition to the effect size estimate itself, an estimate of its sampling variance is

needed for meta-analysis. We assessed the performance of proposed variance estimators

using relative bias; for an effect size estimator g with associated variance estimator Vg, the

relative bias of the variance estimator is the ratio of the expected value of the variance

estimator E(Vg) to the true variance of the effect size estimator Var(g). Relative biases close

to one mean that the variance estimator is unbiased.

Figure S2 plots the relative bias of the c-REML and HPS variance estimators when

N = 8, and is constructed in the same fashion as Figure S1.3 From the figure, it can

be seen that the HPS variance estimator is somewhat inaccurate for smaller values of the

within-case reliability ρ, tending to under-estimate the true variance for positive values of

the autocorrelation φ; this is true even at the larger sample size considered. In contrast, the

variance estimator for gAB provides more accurate estimates, with bias that depends less

strongly on ρ and φ. Averaging across the levels of the nuisance parameters, the variance

estimator for gAB tends to over-estimate the true variance by 16% at the smallest sample

size considered (m = 3 and N = 8). However, the average relative bias is close to unity

for larger numbers of cases: for m = 4, the average relative bias is 1.03 when N = 8 and

3Results for N = 16 are very similar.
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Figure S2: Relative bias of variance estimators under MB1. Point-wise Monte Carlo s.e.
< 0.021.

0.98 when N = 16. Together with the small biases displayed by gAB, these results suggest

that the c-REML estimator is a reasonable alternative to the methods described by HPS for

estimating effect sizes based on MB1.

Next, we examined the coverage rates of the two CIs described in the main text of the

article. Figure S3 reports the coverage rates of 95% confidence intervals constructed using

symmetric t critical values and using the non-central t critical values; each boxplot represents

the distribution of coverage rates across the levels of the nuisance parameters. The symmetric

CI tends to over-cover: with m = 3 the average coverage rate is 96.3%, decreasing to 95.6%

when m = 6. The CI based on a non-central t approximation tends to have less than the

stated coverage rate, with average rates ranging from 91.9% when m = 3 to 93.5% when

m = 6. The coverage rate of the non-central CI is also more variable across the space of the

nuisance parameters φ and ρ. For instance, when m = 6, the coverage of the symmetric CI
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Figure S3: Range of coverage rates for nominal 95% confidence intervals under MB1. Monte
Carlo error is negligible.

ranged from 94.4% to 97.2% across the levels of the nuisance parameters, while the coverage

of the non-central CI was more variable, ranging from 91.0% to 95.6%.

Finally, some incidental results from this first simulation study shed further light the per-

formance of the HPS variance estimation methods. HPS noted that the poor performance

of their variance estimator may be due to the fact that it depends strongly on the values

φ and ρ, which must typically be estimated from the data. For estimating these nuisance

parameters, HPS used moment estimators that have poor sampling properties when phase

lengths are short, regardless of the number of cases used. In comparison, the REML es-

timators of the same nuisance parameters are less biased and more precise. To illustrate

this, Figure S4 plots the biases of the REML estimator and the estimator used by HPS as

a function of the true parameter φ, specializing the results to ρ = 0.6. Both estimators are

approximately unbiased when φ = 0, but the moment estimator of φ has a large, negative

bias that is approximately proportional to the true parameter value. Though the bias of the

this estimator is mitigated by increasing the number of measurement occasions, it remains

constant as the number of cases increases from m = 3 to m = 6. In light of this, we speculate
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Figure S4: Bias of auto-correlation estimators under MB1 when ρ = 0.6. Point-wise Monte
Carlo s.e. < 0.002.

that the performance of the variance estimator proposed by HPS may be improved by using

different estimators of the nuisance parameters, such as the REML estimators.

2 Model MB2

The second simulation study examined the operating characteristics of the c-REML estimator

under MB2. Table 2 reports the design of the simulation study, which consists of an 8× 5×

2 × 4 × 2 factorial. Compared to MB1, MB2 has one further random effect, and thus two

additional variance components: the variance of treatment effects τ 21 and the covariance of the

treatment effects and baseline levels τ10. In the previous simulation study, it was possible

to explore the parameter space fairly thoroughly, but the greater number of parameters

prohibits as comprehensive a simulation for MB2. We limited the simulation design in

several ways. First, we parameterized the between-case variance in treatment effects as

a proportion of the between-case variation in baseline levels; letting λ1 = τ 21 /τ
2
0 , we set

λ1 = 0.1 or λ1 = 0.5 to represent moderate and high levels of treatment effect heterogeneity,
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Table S3: Simulation design for model MB2

Parameter Definition Levels Min. Step Max.

φ Autocorrelation 8 −0.7 0.2 0.7
ρ Within-case reliability 5 0.0 0.2 0.8
λ1 Ratio of variance components 2 0.1 0.4 0.5
m Number of cases 4 3 1 6
N Measurement occasions 2 8 8 16
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Figure S5: Bias of effect size estimators under MB2, averaged over levels of φ and λ1. Point-
wise Monte Carlo s.e. < 0.001.

respectively. Next, we set τ10 = 0 because pre-testing indicated that the correlation between

random effects had little influence on the bias of the effect size estimates. As previously, we

set γ00 = 0, γ10 = 1, and τ 20 +σ2 = 1 so that the true effect size parameter δAB = 1. For each

combination of parameter levels, we generated 2 × 104 datasets and calculated the c-REML

estimator, associated variance estimator, and confidence intervals for each dataset.

Figure S5 plots the bias of the c-REML estimator (gAB) for varying numbers of cases

m, measurement occasions N , and within-case reliability ρ, averaging over the values of the

other parameters (φ and λ1). Lacking other effect size estimators comparable to the HPS

estimator for MB1, we used the unadjusted REML estimator (δ̂AB) as a point of comparison;
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Table S4: Average and maximum mean-squared error of gAB under MB2

N = 8 N = 16

m mean max mean max

3 0.290 0.664 0.221 0.545
4 0.198 0.411 0.153 0.356
5 0.149 0.289 0.116 0.259
6 0.120 0.228 0.092 0.200

Figure S5 plots its bias as well. Even at the smallest sample size considered, the bias of gAB

is fairly small. When m = 3 and N = 8, the absolute bias is less than 7.3% across all

combinations of parameters considered; for m = 4, the bias is always less than 4.9%; for

m ≥ 5, the bias is always less than 2.9%. The bias of gAB is also both smaller and less variable

than that of δ̂AB, which increases substantially with ρ. Under this data-generating model,

the c-REML estimator appears to have biases small enough to warrant use in meta-analysis,

particularly for studies with at least four cases.

Alhough the c-REML estimator has only small biases, it is nonetheless imprecise when

the sample of cases is small. To characterize its variability, Table 2 reports the average and

maximum MSE of the estimator across the levels of the nuisance parameters. The average

MSE is between 26% and 38% higher than the corresponding MSE under Model MB1. As

a point of comparison, the average MSE when m = 4 and N = 8 is comparable to the

variance of the Hedges’ g effect size estimate from a balanced two-sample experiment with

25 participants; the average MSE when m = 6 and N = 8 is comparable to that from an

experiment with 39 participants. The MSE of gAB varies depending on the level of auto-

correlation and within-case reliability, and is generally increasing in φ, ρ, and λ1.

Next, Figure S6 displays the relative bias of the c-REML variance estimator versus the

auto-correlation φ, for varying numbers of cases and measurement occasions. Across the pa-

rameter space and across levels of m, and N , the variance of gAB tends to be over-estimated.

The over-estimation is substantial for small samples of cases: for example, the average rel-

ative bias is 1.43 when m = 3 and N = 16. Even at the largest sample size considered, the
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Figure S6: Relative bias of c-REML variance estimator under MB2, averaged over levels of
λ1. Separate lines are plotted for different levels of ho to illustrate how the relative bias
depends on the within-case reliability. Point-wise Monte Carlo s.e. < 0.022.

variance is moderately over-estimated: the average relative bias is 1.14 when m = 6 and

N = 16. The bias in the approximate variance estimator may come from several sources,

including from approximating the distribution of δ̂AB by a t-distribution, from approximat-

ing the variance of the REML estimates using the inverse expected information matrix, and

from using imprecise parameter estimates in calculating the information matrix.

Finally, Figure S7 reports the coverage rates of 95% confidence intervals constructed

using symmetric t critical values and using the non-central t critical values. The results are

broadly similar to the previous simulation. The symmetric CI tends to over-cover: with

m = 3 the average coverage rate is 97.8% (with a minimum of 95.1% and a maximum

of 99.5%), decreasing to 96.4% when m = 6 (with a minimum of 93.9% and a maximum

of 97.6%). The CI based on a non-central t approximation tends to have less than the

stated coverage rate, with average rates ranging from 93.3% when m = 3 (minimum: 88.5%,

maximum 96.4%) to 94.2% when m = 6 (minimum: 92.0%, maximum 96.3%). The coverage

rate of the non-central CI is also more variable across the space of the nuisance parameters.
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Figure S7: Range of coverage rates of 95% confidence intervals under MB2. Monte Carlo
error is negligible.

3 Model MB4

The third simulation study examined the operating characteristics of the c-REML estimator

under MB4, which allows for baseline trends that vary across cases as well as a change in

trend due to treatment (constant across cases). Compared to MB1, MB4 has two additional

parameters in the mean specification (the baseline trend γ20 and the trend-by-treatment

interaction γ30) and two additional variance parameters (the variance of the baseline slopes

τ 22 and the covariance of the baseline slopes and levels τ20).

The effect size parameter in MB4 depends on the analyst’s choice of times A and B, which

characterize a hypothetical between-case randomized experiment by the point of treatment

introduction and the point of outcome measurement, respectively. For purposes of simu-

lation, we took A = N/2, and B = 3N/4, so that the effect size represents the change

due to treatment after N/4 measurement occasions, which is a reasonably short time rel-

ative to the length of the study. Because MB4 includes linear baseline time trends that

vary across cases, the choice of centering point for the time trend affects the interpretation
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Table S5: Simulation design for model MB4

Parameter Definition Levels Min. Step Max.

φ Autocorrelation 8 −0.7 0.2 0.7
ρ Within-case reliability 5 0.0 0.2 0.8
λ2 Ratio of variance components 2 0.1 0.4 0.5
m Number of cases 6 3 1/3 12
N Measurement occasions 2 8 8 16

of the variance components. We centered time at point B = 3N/4, so that τ 20 represents

the between-case variation in the level of the outcomes at time B and τ20 is the covariance

between case-specific baseline slopes and baseline outcome levels at time B.

Table 3 summarizes the design of the third simulation study, which parallels that for

MB2. The main difference is that we extended the maximum number of cases considered,

using m = 3, 4, 5, 6, 9, 12. To moderate dimensionality, we limited the parameter space

in several ways. First, we parameterized the between-case variance in baseline slopes as

a proportion of the between-case variation in baseline levels; letting λ2 = τ 22 /τ
2
0 , we set

λ2 = 0.1 or λ2 = 0.5 and used τ20 = 0 throughout. Next, we did not vary the fixed effects,

instead setting the average baseline outcome level γ00 = 0, the (fixed) change in the level

due to treatment γ10 = 1, the average baseline slope γ20 = 0, and the (fixed) increase in

slope due to treatment γ30 = 0. Finally, we set τ 20 + σ2 = 1 so that the true effect size

parameter is δAB = 1. For each combination of parameter levels, we generated 2 × 104

datasets and calculated the c-REML estimator, variance estimator, and confidence intervals

for each dataset. The presentation of results parallels that of the previous simulation study.

Figure S8 plots the bias under MB4 of the c-REML estimator (gAB) as well as the

unadjusted estimator (δ̂AB). As under MB2, the bias of gAB is surprisingly small, even at

the smallest sample sizes considered. When m = 3 and N = 8, the absolute bias is less

than 5.8% across all combinations of parameters considered, though it is as large as 12.8%

when n = 16. For m = 4, the bias is never more than 2.7%, and the average bias across

the parameter space is only -0.8%. Also as under MB2, gAB is substantially less biased than
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Figure S8: Bias of effect size estimators under MB4, averaged over levels of φ and λ2. Point-
wise Monte Carlo s.e. < 0.002.

δ̂AB, which had a bias that increases with ρ. As previously, the bias is small enough that

the point estimator gAB should be considered suitable for use in meta-analysis, particularly

for studies with m ≥ 4.

Though the c-REML estimator has only small biases, it is nonetheless quite imprecise

when the sample of cases is small. To characterize its variability, Table 3 reports the average

and maximum MSE of the estimator across the levels of the nuisance parameters. The

estimator has very high MSE for some combinations of parameters, and is generally increasing

in φ, ρ, and λ2. The average MSE is between 122% and 194% higher than the corresponding

MSE under Model MB1. As a point of comparison, the average MSE when m = 6 and N = 8

is comparable to the variance of Hedges’ g from a balanced, two-sample experiment with 20

participants. The high MSE is a consequence of the need to estimate a scale parameter (the

denominator of the effect size) that includes between-case variance components, based on a

sample of only a few cases.

Next, Figure S9 displays the relative bias of the variance estimator versus the auto-

correlation φ, for varying numbers of cases and measurement occasions; its construction
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Figure S9: Relative bias of c-REML variance estimator under MB4, averaged over levels of
λ2. Note the scale of the vertical axis differs by lattice row. Point-wise Monte Carlo s.e.
< 0.018.
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Table S6: Average and maximum mean-squared error of gAB under MB4

N = 8 N = 16

m mean max mean max

3 0.596 0.862 0.373 0.624
4 0.444 0.685 0.256 0.427
5 0.339 0.546 0.188 0.290
6 0.255 0.421 0.150 0.226
9 0.160 0.271 0.090 0.139
12 0.116 0.199 0.066 0.104
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Figure S10: Range of coverage rates of 95% confidence intervals under MB4. Monte Carlo
error is negligible.

parallels Figure S6, except that m = 9 and m = 12 are also included. Unlike in MB1 and

MB2, here the variance approximation tended to have a downward bias, except for when

m = 3 and N = 8. The under-estimation is more pronounced for longer series length. The

bias of the variance estimator only becomes tolerably small when the number of cases is

relatively large: even when m = 6, the average relative bias is 0.96 for N = 8 but 0.87

for N = 16. The variance approximation in this model depends on a multiple n/4 of the

treatment-by-trend interaction γ30, and so may be particularly sensitive to under-statement

of the variance of fixed effects.
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Finally, Figure S10 reports the average coverage rates of 95% confidence intervals con-

structed using symmetric t critical values and using the non-central t critical values. Unlike

in previous simulations, the symmetric confidence interval does not always over-cover; while

the average coverage rate is greater than 95% for the shorter series length of N = 8, it is less

than 95% for the longer series length of N = 16. The coverage rate approaches nominal levels

only when the number of cases is relatively large. For example, when m = 6, the coverage

rate of the symmetric CI ranged from 91.1% to 97.5%; when m = 9, the coverage rate of the

symmetric CI ranged from 92.6% to 96.7%. The CI based on a non-central t approximation

tends to have less than nominal coverage. The coverage discrepancy is substantial when the

number of cases is small or moderate, ranging from 87.9% when m = 3 (minimum: 81.1%,

maximum 94.1%) to 92.1% when m = 6 (minimum: 89.4%, maximum 95.2%) and 93.3%

when m = 9 (minimum: 91.6%, maximum 95.4%).
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